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INTRODUCTION

Studies have been conducted by the U.S. Geological Survey to ‘identify

geologic conditions that might impose constraints on offshore industrial

activities in Shelikof Strait, Alaska, an area designated for petroleum

leasing (Fig. 1; Hampton and others, 1981; Hampton and Winters, 1981). w

part of these studies sediment cores were collected throughout the strait

(Fig. 2), and physical properties of sediment samples were measured by

laboratory geotechnical testing methods. The geotechnical data are presented

in this report and are evaluated from a regional perspective to infer the

reformational reponse of the sedimentary deposits to static and dynamic loads.

Application of the test data to a regional analysis is restricted by the

degree to which core samples are representative of the sedimentary deposits.

Interpretive geologic studies indicate that the cores used for geologic

testing cover the range of surficial sediment types in the Shelikof Strait

lease area, but analysis of seismic-reflection profiles reveals the existence

of buried stratigraphic units that were not sampled because they lie beneath

the maximum core length of 3 m (Hampton and others, 1981; Hampton and Winters,

1981) . Therefore, the conclusions reached in this report apply directly to

the uppermost deposits in the stratigraphic section, only. Extrapolation

beyond the depths of sampling is limited by the vertical uniformity of

sediment type.

GEOLOGIC SETTING

Shelikof Strait is a nearly parallel-sided marine channel situated

between the Kodiak Island group and the Alaska Peninsula (Fig. 1). The strait

marks the location of a northeast-trending inner forearc basin that is located
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Figure 2-A. Tracklines of continuous seismic-reflection profiles. Solid
lines represent a regional survey contracted by the
Conservation Division, and dashed lines represent site surveys
on cruises of the R/V S.P. LEE (1980) and NOAA ship DISCOVERER
(1981).
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near the convergent margin of the North America plate where it is being

underthrust by the Pacific plate (von Huene, 1979). Large earthquakes are

common to the region; at least 95 potentially destructive events (magnitude

>6) have occurred since recording began in 1902. Twelve volcanoes have

erupted within the last 10,000 years along the Alaska Peninsula adjacent to

the strait.

The seafloor of Shelikof Strait consists of a gently southwest-sloping

central platform bordered by narrow marginal channels parallel to the Kodiak

islands and the Alaska Peninsula (Fig. 3). Shallow shelves trend along the

adjacent landmasses, and they are connected to the marginal channels by

steeply sloping seafloor. Water depth in the northeast part of the strait is

generally less than 200 m, whereas in the southwest it generally exceeds 200 m

and is as much as 300 m. Superimposed on the platform are some local highs.

and lows that have as much as 100 m relief. Along the axes of the marginal

channels are several closed depressions on the order of 30 m relief.

Sedimentary deposits of presumed Pleistocene and Holocene age overlie an

irregular unconformity above Tertiary and older bedrock. Thickness of the

sediment above bedrock, measured from seismic-reflection profiles, is about 80

to 100 m in the northeast half of the strait and increases abruptly to more

tnan 800 m in the southwest (Fig. 4). The thickening reflects a deepening of

the unconformity.

Four seismic-stratigraphic units can be distinguished above bedrock (Fig.

5). The lowest unit (unit 1 in Fig. 5) fills the bedrock depression and

reaches a thickness of 800 m. This unit is interpreted as being of glacial

and glaciomarine origin (Whitney and others, 1980 a, b). The next highest

unit (unit 2 in Fig. 5) is relatively thin (<60 m) and occurs mainly in the
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Figure 3. Bathymetry of Shelikof Strait, 20-m contour interval. Depths
corrected to mean lower low water.
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Figure 4. Thickness of sedimentary units of probably Pleistocene and
younger age. Contour interval: 50 meters except for thickness
greater than 500 m where contour interval is 100 m.
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central part of the strait. Sediment of this unit was deposited within low

areas on the upper surface of bedrock and the glacial unit, and it apparently

was emplaced by marine processes during the Holocene sea-level rise. The

third unit (unit 3 in Fig. 5), which covers essentially all of the seafloor in

the central part of the strait (platform and marginal channels), is up to 180

m thick (Fig. 6) and was deposited by the modern-day oceanic current regime of

southwesterly baroclinic flow from Cook Inlet and the eastern Gulf of Alaska

(Muench and Schumacher, 1980). Unit 4 in Figure 5 underlies the shallow

shelves and interfingers seaward with unit 3. It is composed of sediment

eroded from the adjacent landmasses. The cores subjected to geotechnical

testing and discussed in this paper were taken from unit 3.

METHODS

Sediment cores were collected at 65 stations on two cruises in Shelikof

Strait, in June 1980 aboard the USGS R/V S.P. LEE and in July and August 1981

aboard the NOAA ship DISCOVERER (Fig. 2). A gravity coring system with 8.5-cm

diameter plastic liners in steel core barrels was used on the 1980 cruise,

whereas a vibracoring system with a 10-cm square cross-section plastic liner

in thin-wall stainless steel barrel was employed on the 1981 cruise. Some

grab samples were taken at locations of coarse sediment where the coring

devices were ineffective.

TWO cores were taken at most stations. One was designated mainly for

geological analysis. It was cut into l-m or 1.5-m-long sections, then split

lengthwise for geological description and vane-shear strength testing.

Subsamples were taken for index property determinations.

651



+

.

.

Figure 6. Thickness of highest seismic-strati9raPhic  ‘nit ‘hat cove~~
most of the seafloor of Shelikof  Strait. contour interval:

m.

652



The second core was taken expressly for geotechnical  testing. It was cut

into l-m-long sections, wrapped in cheesecloth, covered with microcrystalline

wax, and stored upright in a refrigerator. These cores were later subjected

to a suite of geotechnical tests in laboratories at the USGS and at a

commercial testing company. .

Several index properties were determined for subsamples of the sediment

cores. Grain size was measured by sieving and pipetting into four size

classes: gravel (>2 mm), sand (2-0.062 mm), silt (0.062-0.004 mm), and clay

(<0.004 mm). Water content, as a percentage of dry sediment weight, was

determined from the weight of sediment samples before and after even drying at

105”C. A correction for salt content of sea water (3.5%) was made to the

weighings. Atterberg limits were determined according to standard procedures

(American Society for Testing and Materials, 1976), except that samples were

not sieved prior to testing. Carbon content was measured with a LECO carbon

determinator with induction furnace and acid digestion. Vane shear

determinations of undrained shear strength were made on split core halves with

a motorized device at a vane rotation rate of 90°/min. The vane is l/2 inch

diameter by l/2 inch high and was inserted into the sediment to a depth twice

the height of the vane.

Consolidation tests were run on subsamples from geotechnical cores to

determine sub-failure reformational properties. Most tests were run on an

oedometer in a stress-controlled mode (Lambe, 1951). Others were run in a

triaxial loading cell under constant rate of strain conditions (Wissa and

others, 1971). The consolidation tests measure change in volume with change

in applied load. The results are normally plotted as void ratio (e = volume

of voids/volume of solids ) versus the logarithm of effective (buoyant)
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vertical stress (p’). Two useful parameters are derived from these curves:

the compression index and the maximum past pressure. The compression index

(Cc) is the slope of the straight-line portion of the e-log p’ curve and

indicates the amount of compression produced by a particular load increment.

The maximum past pressure (u’ ) is the greatest effective overburden stress to

which the sediment has ever been exposed and is determined from the e-log p’

curve by a simple graphical construction (Casagrande, 1936). The ratio

of 0; to the effective overburden stress at the time of sampling (ov~) is the

overconsolidation ratio (OCR), which is a measure of unloading that the

sediment may have experienced, by erosion for example. A third parameter, the

coefficient of consolidation (Cv)I is determined for each load increment of

the one-dimensional consolidation test and is related to the rate of

consolidation.

Static traxial tests were run on cylindrical samples 3.6-cm diameter and

7.6-cm long in order to determine strength properties of the sediment. Tests

were run under undrained conditions with pore pressure measurements (Bishop

and Henkel, 1964) . Most samples were consolidated isotropically prior to

testing, but some were consolidated anisotropically.

Dynamically loaded triaxial tests were also run, with the axial stress on

samples varied sinusoidally at 0.1 Hz. Both compression and tension were

applied at a predetermined percentage of the static strength. These tests can

be used to evaluate the failure conditions of sediment under repeated loading,

such as by earthquakes.

A first set of triaxial tests was run on sediment samples that were

consolidated to somewhat arbitrary stress levels. However, the later testing

program followed the normalized stress parameter (NSP) approach (Ladd and
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Foott, 1974), whereby consolidation

maxi mum past pressure (u;) , as

stresses are chosen on the basis of

determined from consolidation tests.

Typically, the triaxial test specimen was consolidated to four times o; ,

which eliminates some of the disturbance effects associated with coring.

Overconsolidation was artificially induced in some tests by rebounding the

specimen to lower stress levels before applying the triaxial  load. Measured

values of undrained shear strength (Su) are normalized with respect to

effective overburden stress (aj) . A premise

ratio S /a’ is constant for a particular value
U v

of the NSP method is that the

of CCR. Moreover, a relation

exists between s/u’ and CXR that allows
U v

depths below the level of sampling (Mayne,

prediction of sediment strength at

1980) .

RESULTS

Sediment description, index properties: Sediment samples could only be

collected to shallow depths (<3 m) beneath the seafloor. Therefore, most are

from the highest stratigraphic unit (unit 3, Fig. 5). However, judging from

seismic-reflection profiles over sampling stations, a few outcrops of other

units were also sampled. Seismic-reflection profiles also show that unit 3

has a typical thickness of about 80 to 100 m

acoustic reflectors within this unit indicates

with depth, but there is no reason to suspect

type, except for possible thin beds of volcanic

for the

of the

this.

(Fig. 6). The appearance of

some lithologic variability

radical changes in sediment

ash. The physical properties

cores should therefore be representative of the terrigenous component

unit as a whole, but drill-hole samples would be necessary to confirm
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The texture of surficial

adjacent marginal channels grades

northeast part of the strait

,

sediment on the central platform and in the

from gravelly and sandy material in the

to mud in the southwest (Figs. 7 and 8;

Appendix). A general fining trend from northwest to southeast across the

platform also exists.

The two grab samples of coarse sediment recovered from Stevenson Entrance

appear to have been taken from outcrops of unit 1. Most of the coarse clasts,

which range to boulder size, are angular to subangular, and some are faceted.

This supports the hypothesis that unit 1 was deposited by glacial processes.

A few grab samples of coarse material were also recovered from the

shallow shelves and from the adjacent slopes. They probably are from unit

4. Coarse clasts have similar morphology to those from unit 1, perhaps

reflecting glacial transport at some point in their history.

Sediment cores from the platform and marginal channels in the central

portion of the strait have a fairly uniform stratigraphy with depth. Sandy

sediment in the northeast end of the strait is predominantly greenish-gray,

with variations from black to yellowish brown. Sand-filled burrows, pebble

clasts, and whole or broken shells are common. In progressively finer-grained

cores to the southwest, color remains greenish-gray but is less varied, and

shells and clasts are rare.

A layer of

layer is nearly

few millimeters

The refractive

volcanic ash occurs in many cores. Maximum thickness of the

20 cm. It is size-graded, with the coarsest basal fragments a

diameter. The color is from tan to white with a pink cast.

index of the ash is 1.485 + 0.002, which in this region is

unique to the outfall from the 1912 Katmai eruption (Nayudu,  1964; Pratt and

others, 1973). Depth of the ash beneath the seafloor was used to calculate
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Figure 8. Mean grain size of seafloor sediment, in phi-units.



values of post-1912 sediment accumulation rate (Fig. 9). Accumulation rate

varies significantly throughout the strait. It is greatest near the Alaska

Peninsula at the southwest end of the strait, whereas it is near zero at

places in the marginal channel along the Kodiak island group.

Water content of sediment is shown in Figure 10 as interpolated values at

l-m depth in cores. It is calculated as a percentage of dry sediment weight,

and therefore, values in excess of 100% are possible if the weight of water

exceeds the weight of sediment grains. Water content generally decreases to

the northeast, inversely correlating with grain size. Moreover, water content

increases across the strait, from the Alaska peninsula to Kodiak Island. Bulk

sediment density at l-m depth, which is calculated from water content and

grain specific gravity, correspondingly decreases down and across the strait

(Fig. 11). Average grain specific gravity itself shows no discernible trend

(Fig. 12).

Atterberg limits describe the plasticity of sediment, in terms of the

liquid limit (water content that separates plastic and liquid behavior) and

the plastic limit (water content that separates semi-solid and plastic

behavior). Useful derivatives are the plasticity index (difference between

the liquid and plastic limits), and the liquidity index (position of the

natural water content relative to the liquid and plastic limits). Certain

trends in plasticity are evident in Shelikof Strait. Average liquid limit,

plastic limit, and plasticity index increase down the strait toward the

southwest, and also generally across the strait, toward the southeast (Figs.

13, 14, and 15; Appendix). These properties also generally increase with

decrease in mean grain size (Figs. 16, 17, and 18), although the data for

plastic limit are quite scattered. Plastic limit is less variable than liquid

limit, which is typically the case (Mitchell, 1976; Richards, 1962).
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Figure 9. Sediment accumulation rates, in cm/100 yr.
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Correlations have been made between liquid limit and compressibility

(Herrmann and others, 1972; Skempton, 1944). The majority of Shelikof  Strait

samples fall within the medium (30 < liquid limit < 50) and high (liquid limit

> 5 0 )  c o m p r e s s i b i l i t y  r a n g e s .

Nearly all measured liquidity indices in Shelikof Strait are greater

1 (Appendix), which is usual for near-seafloor marine sediment. Sediment

than

with

a liquidity index greater

A plot of liquidity

chart (Casagrande, 1948)

than one behaves as a liquid when remolded.

index versus plasticity index - termed a plasticity

shows a trend parallel to the A-line that divides

basic soil types (Fig. 19). Most sediment samples from Shelikof Strait plot

below the A-1ine, which is typical of inorganic silt and silty clay of high

compressibility. The

taken throughout the

1962) .

linear trend of data points is expected for samples

same sedimentary deposit (Terzaghi, 1955; Richards,

Undrained shear strength of sediment samples (Su), as measured with a

laboratory miniature vane shear device, generally decreases toward the

southwest end of the strait, and thus correlates with the water content trend,

although there is much scatter (Figs. 20 and 21; Appendix). The consistency

of most of the near-seafloor sediment can be classified as very soft (Su < 12

kilopascals),  but some is soft (12 kpa < Su < 24 kpa) to medium (24 kpa < SU <

48 kPa) (Terzaghi and Peck, 1948). Hampton and others (1981) showed that

shear strength is anisotropic in Shelikof Strait sediment cores. Values of

shear strength measured with the axis of vane rotation perpendicular to the

axis of core samples exceed the values of strength measured with the axis of

vane rotation parallel to the core axis. The magnitude of sediment strength

thereby depends on the orientation of the applied stress.
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Sediment samples from Shelikof Strait are characterized by low to

intermediate content of organic carbon, compared to other marine areas

(Bordovskiy,  1965, 1969; Gardner and others, 1980; Lisitzin, 1972; Rashid and

Brown, 1975). Most values are between 0.40% and 1.50%. Organic carbon

generally increases down the strait toward the southwest, as well as across

the strait toward the southeast (Fig. 22; Appendix A). Correlations with

other physical properties were shown by Hampton and others (lW1). Organic

carbon content correlates positively with water content and plasticity index,

whereas an inverse correlation is found with grain size and vane shear

strength. Correlations similar to those described above have been reported by

others for low organic-carbon content sediment (Bordovskiy, 1965, 1969; Bush

and Keller, 1981; Keller and others, 1979; Lisitzin, 1972; Mitchell, 1976;

Odell and others, 1960).

Percent calcium carbonate is typically low in Shelikof Strait sediment

(Fig. 23; Appendix). Most values are less than 3.50%. Two locations with

anomalously high values, off Shuyak Island and in Stevenson Entrance, are near

the boundary of the strait.

Consolidation properties: Consolidation properties as determined from

laboratory tests are listed in Table 1. All tests indicate a maximum past

pressure (a~) greater than the present overburden pressure (cv~) . The

for all tests.

the overconsolidation ratio (OCR) and is greater than 1.0

The usual implication is that the sediment has experienced

unloading as a consequence of erosion.

evidence for erosion; in fact, sediment

throughout most of the strait (Fig. 9).

However, there is no geological

is accumulating at high rates

The high values of OCR probably
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I Table 1. Consolidation test results.

Depth * t
in a u

Station core Vo Vxlo
cc

rmmbe r (cm) (kPa ) (kPa ) frGo OCR

1 507 39 1.1 6.o 0.94 0.17 1*1O 5

171 5.0 32.0 0.76 0.22 1.13 6

509

511

6 4 9

5 2 5

528

540

8 9 3 . 7 20.0 0.86 0.27 2.67 5

94 3.7 23.0 0.88 0.12 0.81 6

6 4

111

1 9 1

41

116

167

4 5

96
.

165

64

144

4 7

1 3 1

2 0 1

2 . 8

4 . 6

9 . 8

2.0

6.1

8.9

3*3

6.9

13.8

4.7

10.4

2 . 8

6 . 1

1 1 . 6

15.0

9.0

12.0

56.0

30.0

29.0

26.0

28.0

64.0

43.0

45.0

20.0

48.0

65.0

0.52

0.66

0.45

0.33

0.54

0.60

0.30

0.26

0.26

0.28

0.29

0.50

0.54

0.37

677

0.05

0.09

0.18-

0.04

0.12

0.08

0.30

0.35

0.54

0.18

0.31

0.11

0.20

0.16

2 . 1 7

1.10

1.38

1.30

0.97

1.49

1.52

1.68

2.23

.
1.57

3.59

0.50

0.67

0.98

5

2

1

2 8

5

3

8

4

5

9

4

7

8

6



represent initial cementation of sediment

are not indicative of overconsolidation  in

particles or grain interlocking and

the strict sense of the term.

Compression index (Cc) is a measure of the amount of consolidation that

occurs for a given increment in load. The coarse sediment at the northeast

end of the strait is less compressible than the progressively finer sediment

to the southwest, as indicated by a southwest trend of increasing Cc ((rable

1). Richards (1962) reported a range of 0.20 to 0.87 for Cc measured on

samples of marine sediment from many areas, and most values fror.~ Shelikof

Strait fall within this range.

Compression index commonly shows a linear relation

(LL). The data from Shelikof Strait, when

general trend, but with much scatter (Fig.

plotted in this

24). Skempton

t o  l i q u i d  limit

manner, exhibit a

(1$344) found that

the relation can be expressed as

cc = 0.009

and the regression equation for Shelikof

cc = 0.006

( LL - lo),

is similar:Strait sediment

(LL + 5.7).

The rate at which consolidation occurs in response to loading determines

the coefficient of consolidation (cv). It is directly related to permeability

of a sediment and inversely related to the compressibility. The coefficient

is calculated for each load increment during a laboratory consolidation test

from plots of deformation versus tine. & shown in Table 1, Cv commonly

varies through one to two orders of magnitude for a single test. No general

trend in the data is evident, although the high expected permeability and low

compressibility of coarse-grained  sediment would suggest a decrease of Cv to

the southwest. Measurements of Cv for clay sediment from various marine

locations by Richards and Hamilton (1967) are in the range 3.2 - 6.0 x

10-4 cm2/see, which are lower than typical values in Shelikof Strait.
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Static strength properties: Sediment properties derived from static triaxial

strength tests are listed in l’able 2. The primary measured property is the

undrained shear strength (Su). It is the maximum sustainable shear stress
t

within a sample subjected to a particular consolidation stress (oc) . Su acts

along a plane inclined at 45° to the axial load. The arisen of Su divided by

the effective normal stress across this plane is the effective angle of

internal friction

behavior of the

(+’), whose magnitude is an indication of the strength

sediment uncle r slow (drained) loading conditions. In

comparison, the ratio S [a’ gives an indication of the strength behavior
Uc

during rapid (undrained) loading conditions. The difference in drained and

undrained strength behavior depends on the pore water pressure generated in

response to the tendency for volume change when the sediment is axially

loaded. If a sediment has a high tendency for volume change, the difference

in strength between rapid

The effective angle

sediment samples (OCR =

Compare with values given

and slow loading can be substantial.

of internal friction for the normally consolidated

1) in this study is relatively high (35° - 460).

by Lambe and Whitman (1969, p. 149 and 306). The

higher values (> 40°) are in the finer sediment cores from the southwest half

of the strait (Table 2). Therefore, sediment from Shelikof Strait appears to

be atypically strong under conditions of drained loading, with the finer

~ediment  exhibiting higher strength. Samples tested at OCR > 1 tend to have

$’ comparable to that of normallY consolidated samples, except for station 649

where some overconsolidated samples have significantly higher values. The

data indicate similar drained behavior of normally consolidated and

overconsolidated sediment in the strait.

.,
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Table 2. Stat ic  triaxial  strength test r e s u l t s .

Depth 1
in a Su

Station ccore Induced su/ 0: $
number (cm) (kPa) OCR (kPa) (degrees)

509 120

170

511 17

28

44

180

121 8.3

649 86

86

109

109

127

132

525 8

73

85

152

528 37

80

94

122

139

540 29

69

120

140

159

507 30 53.9

130 140.0

172.4

47.0

20.7

2.8

1.4

48.2

5.8

24.0

46.7

0.3

142.3/70.7

4.4

160.5

1.4

19.3

6.9

282.5

1.4

179.2

6.9

30.3

178.8/89.6

15.2

1.4

10.3

199.8

114.0

1

1

1

4.1

3

1
18.6

5.9
3

1
8
1

6

1

1

3.6
1

6

1
1.8
681

18.8

73*5

73.4

68.9

25.4

8.8

9.6

27.0

3.2

57.6

52.3

13.0

58.3

12.3

76.5

18.5

47.5

25.2

121.6

18.6

79.8

19.0

77.4

66.7

24.2

15.4

16.7

79.9

82.8

0.3

0.5

0.4

1.5

1.2

3.1

6.3

0.6

41

2.4
.

1.1

43.3

0.4

2.8

0.5

13.2

2.5

3.6

0.4

12.8

0.4

2.8

2.5

0.3

106

11.0

1.6

0.4

0.7

39

46

40

<42

39

64

64

43

<40

<54

<57

39

<69

41

48 .

34

45

37

50

35

43

38

41

40

60

47

35

40



Lambe and Whitman (1969, p. 307, Figs. 21-24) detected

+’ anti plasticity index for normally consolidated soil.

wnich there are plasticity index values in Shelikof Strai

a relation between

Triaxial data for

t plot within the

range of Lambe and Whitman’s data, except for the core at station 511, which

is abnormally strong for sediment with such high plasticity (Fig. 25).

Evaluation of undrained strength,

judgment in order to detect trends. In

consolidation stress (act) seem to give

1
in terms of su/o , requires some

c

particular, the tests run at low

erratic values of Su/U ‘. This was
c

also shown to be the case for triaxial  data from nearby Kodiak Shelf (Hampton,

in press). Tests run at high values of consolidation stress (which corrects

some of the effects of disturbance) and OCR = 1 have values of Su/acqbetween

0.3 and 0.6, with no areal trend (Table 2). The value of Su/ac increases with

OCR for each core tested.

The static triaxial test data are plotted according to the NSP approach

in Figure

change in

and 0.97.

26. The slope (A) of the line for each core is a measure of the

undrained strength with OCR. Most cores have A values between 0.79

Mayne (1980) compiled the results of many triaxial tests and found

a mean value of A = 0.64 with a standard deviation of 0.18. The sediment in

Shelikof Strait, with its relatively high values of h would tend to retain

more of its strength after unloading compared to most sediment examined by

Mayne (1980). The A = 1.43 calculated for the sediment of station 52~ is

greater than the theoretical limit of A = 1.0, and further testing is required

to resolve this conflict.

Dynamic strength properties: The data from triaxial strength tests are given

in Table 3. The quantity =Cyc /su is the cyclic stress level, the average
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Figure 26. Graph of normalized undrained shear strength versus
overconsolidation  ratio.
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Table 3. Dynamic triaxial strength test results.

Depth v
in u

c cycisu
T Cycles

Station core Induced to
number (cm) (kPa) OCR (%) failure

509 137 173.6 1 49 145

137 175.0 1 66 64

511

649

525

528

540

152 46.9 1 70 10

167 46.9 1 47 48

96 153.1 1 70 22

96 146.0 1 .56 450

140 30.2 4.4 79 17

140 139.8 1 72 39

135 282.4 1 47 30

117 282.4 1 70 7

23 27.5

178 179.1

193 179.1

152 199.8

227 199.8

238 299.8

4

1

1

1

1

1

32

70

46

71

43

56

51

13

110

12

900+

28
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~yc) applied sinusoidally with full stress reversal atvalue of shear stress (T

0.1 Hz, expressed as a percentage of the static undrained shear strength

(Su).

Tcyc “

strain

chosen

Pore water pressure and strain accumulate with repeated application of

At some point, the pore water pressure approaches the confining stress,

increases abruptly, and the sediment fails. In our tests, failure was

when 20% strain was reached.

Samples typically fail

levels. Figure 27 shows the

for Shelikof Strait samples.

within the range of test results

and others, 1981; Anderson and

cyclic strength degradation is i

in fewer cycles at

number of cycles to

Although there is

progressively higher stress

failure versus stress level

some scatter, the data fall

on terrigenous

others, 1980;

ndicated;

(as might be imparted by an earthquake,

stress levels between 60% and 80% of their

DISCUSSION

The primary geotechnical  concerns in

that

for

sediment from other areas (Lee

Hampton, in press). Moderate

is, after 10 cycles of loading

example), the samples fail at

static strength.

Shelikof Strait include settlement

of structures, bearing capacity under static and cyclic loading lateral load

capacity, and anchor breakout resistance. Natural slope failures are not a

serious problem because only one small sediment slide has been documented

(Hampton and others, 1981). There is some evidence for gas-charged sediment,

but the problem of low strength that might exist in sediment of this type was

not addressed in the present study.

Quarternary sediment in Shelikof Strait covers bedrock to a thickness of

from 20 m to more than 800 m (Fig. 4). The sequence consists of Pleistocene

glacial and glaciomarine  sediment at the base, overlain by Holocene marine
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deposits. The highest stratigraphic unit, deposited by oceanic currents as

exist today, has accumulated to a thickness of 80-100 m over most of the

strait; the total range is about 20 m to 180 m. Geotechnical testing was

performed only on samples from this uppermost unit. A geotechnical analysis

based on these data probably addresses most situations of engineering

concern. Deeper stratigraphic units appear from interpretive geologic studies

to be relatively coarse-grained (Hampton and Winters, 1981; Whitney, Holden,

and Lybeck, 1980; Whitney, Hoose, Smith, and Lybeck, 1980), and they probably

are stable, but deep drill-core samples would have

confirm this by geotechnical testing.

The pattern of grain-size variation (Figs. 7

to be obtained in order to

and 8) evidently reflects

progressive sorting by the southwesterly flowing barotropic current tnat

dominates circulation in the strait. The present study and the previous

report by Hampton and others (1981) show that some index properties vary in

relation to grain

therefore increase

across the strait

size. Properties that show a direct correlation and

to the southwest down the strait and to the southeast

include water content, liquid limit, plastic limijz,

plasticity index, and organic carbon content (Figs. 10, 13, 14, 15, and 22).

Properties that correlate inversely with grain size include bulk sediment

density and undrained (vane) shear strength (Figs. 11 and 20).

Consolidation

but this probably

than a result of

tests indicate that sediment samples are overconsolidated,

is a near-seafloor diagenetic or fabric phenomenon rather

erosion, because net sediment accumulation is presently

occurring throughout the strait (Table 1, Fig. 9). The fine-grained sediment

to the southwest has high values of compression index (Cc), which indicates

that it is more compressible than the coarser material to the northeast. The

rate of consolidation, as shown by the coefficient of consolidation (cv)* is
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highly variable for each consolidation test and does not show an areal trend

(Table 1). Intuitively, a higher value of Cv would be expected for the

coarser-grained sediment because of its normally higher permeability and lower

compressibility, but apparently this is not the case.

Another unexpected result is that the static drained strength, in terms

of the effective angle of internal friction ($), is higher for the fine-

grained sediment than it is for to the coarser-grained  samp--es (Table 2).

Drained strength does not vary appreciably with OCR. Undrained static

strength behavior does not exhibit significant areal variation. Values

of S#Jc’ for tests run at OCR = 1 are between 0.3 and 0.6. This parameter

increases with OCR for each core that was tested. The NSF pore-pressure
.

parameter (A) varies from 0.79 to 0.97, which indicates significant static

strength increase with OCR (Fig. 26). Again, no areal trend is apparent.

But, because few data points were used to plot the lines in Figure 26 and

because large scatter of data exists for some individual cores, additional

strength testing at more levels of OCR would add precision to the plots and

perhaps reveal some systematic variation.

Test data for most cores define similar response to cyclic loading over a

broad range of number of cycles required to cause failure (e.g., cores 511,

525, 528, and 540 in Fig. 27). Dynamic strength degradation varies over a

limited range at low number of cycles; for instance, it is between about 60%

and 80% for 10 cycles.

Geotechnical properties of Shelikof  Strait sediment can be compared with

data from other studies to determine if the sediment has normal reformational

behavior. However, few data exist for some properties, which makes the

evaluations tentative.
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Most values of compression index fall within the range of 0.20 to 0.87

reported by Richards and Hamilton (1967) for silty clay to highly colloidal

clay; one test on the core from station 507 has a high value of 0.94 (Table

1). Skempton’s (1944) classification of compressibility based on liquid limit

indicates that Shelikof Strait samples are moderately to highly compressible

(Appendix). Substitution of the class-boundary values of liquid limit

(moderate compressibility: 30 < LL < 50; high compressibility: LL > 50) into

the regression equation for Shelikof Strait data (Fig. 24),

cc = 0.006 (LL + 5.7),

indicates that the range of moderate compressibility is 0.21 < Cc < 0.33 and

the high range is Cc < 0.33, which is consistent with classifying the sediment

as moderately to highly compressible (Table 1).

Effective friction

(35” - 46°) compared to

(1969, p. 149 and 306)

angle ($’) for sediment in Shelikof Strait is high

the range (20° - 40°) reported by Lambe and Whitman

for normally consolidated sediment. Apparently, no

compilations of $’

made. Hampton (in

terrigenous samples

exclusively for terrigenous marine sediment have been

press) reports $’ mostly in the 30° - 40° range for

from the Kodiak Shelf. Shelikof Strait terrigenous

sediment is relatively strong under drained loading conditions.

Lambe and Whitman (1969, p. 452, Fig. 29.19) present

undrained strength of normally consolidated marine clay,

1

data on the

and values

of su/a “are between about 0.2 and 0.4. The range for normally consolidated
c

Shelikof Strait samples is 0.3 to 0.6, so they are relatively strong under

conditions of undrained loading. S /a ‘for normally consolidated terrigenous
Uc
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sediment from the Kodiak Shelf are also high, from 0.4 to 1.0 (Hampton, in

press ) .

Values of the NSP factor A are high (0.79 - 0.97) compared to the average

value of 0.64 (standard deviation = 0.18) in the extensive compilation by

Mayne (1980). The implication is that the increase of strength with

overconsolidation is higher than normal.

The low to moderate cyclic strength degradation of Shelikof Strait

samples is similar to the behavior of clay sediment reported in other studies

(Lee and others, 1981; Anderson and others, 1980; Hampton, in press).

Sediment failure in response to large earthquakes certainly is a possibility,

but the potential is not as great as has been predicted for some deposits of

silt in the northeast Gulf of Alaska (cyclic strength at 10 cycles as low as

40% of the static strength; Lee and Schwab, in press) and volcanic ash on the

Kodiak Shelf (cyclic strength at 10 cycles is 12% of the static strength;

Hampton, in press). The deposit of Katmai ash in Shelikof Strait was not

subjected to geotechnical testing. However, its in situ density is so great

that normal gravity coring devices could not penetrate the layer. The

relative density appears to be high and therefore the liquefaction potential

is low. The possibility that more deeply buried ash layers are present and

might be highly susceptible to liquefaction cannot be evaluated with the

information presently available.
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APPENDIX:

INDEX PROPERTY CHARTS FOR SEDIMENT CORES
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1 l “ 1 (
~ 7 ’ - -

—
,verage

Carbonate Vane shear
(%dryweight)

verage

!Wrongth
(kPa)

50
I I I

$erage lquidit y verage
plasticity index grain specific organic
index: at 1 m.: gravity: carbon. 0.874

36 1.74 2.84 1.075 at Y’i

Vane shear
strength



Depth
(cm)

1

/

50

100

150

2 0 0

2 5 0

3 0 01

Station 512 Location ST”SZ.S’N  154”14.9’W Water depth lgsrn

Grain  size
(weight %)

m

Bulk den ity
t(gin/cm )

I 1.5 2.0

●

Buik density

Water content ● Plasticity Liquidity Grain Organic C a r b o n a t e  < J* s h e a r

% dry ;eight)
50 100 1!

~

Water content

--i%
●

g-ravity (q
01 .02 .0  2 .0  2 .5  3 .0

Atterbera iimitsH i n d e x index specific carbon (%dryweightj “s!rength

‘?w;i~hi) 0 1 2 3 4  ‘k P a )  5 0
~11—f—11

●
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24iimit ~ —

Qraln
specific
gravity

1 2.5 3
, 1 I’ll’
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~ I , 1 1
D 1.5 2.0
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